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Abstract

In supersymmetric theories the charged sleptons of di�erent generations may

oscillate amongst themselves while they decay. In the case of three generation

oscillations, superpartner production at the LHC and NLC may lead to an

observable CP -violating signal N(e+��) � N(�+e�). This signal is propor-
tional to a CP -violating invariant of the slepton mass matrix, eJ , which is

not constrained by searches for the electric dipole moment of the electron.

The sensitivity of the LHC and NLC to this signal is highly dependent on

superpartner masses, but eJ may be probed to a level of 10�3. Observation

of the CP -violating signal would imply a de�nite structure for the slepton

mass matrices and have strong implications for models of 
avor and SUSY

breaking.
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I. INTRODUCTION

Supersymmetry (SUSY) may provide a solution to the gauge hierarchy problem and
is one of the most attractive candidates for physics beyond the Standard Model (SM). If
SUSY is discovered, the next experimental task will be to determine the SUSY parameters as
accurately as possible. The precision measurements of sin2 �W at LEP and SLD have already
provided us with indirect evidence for supersymmetric uni�cation at high energy scales. A
precise knowledge of superpartner properties could further test the idea of supersymmetric
uni�cation, and may reveal additional aspects of the theory at high energies, perhaps even
up to the Planck scale.

With so much at stake, much work has been done on the feasibility of determining SUSY
parameters at future colliders[1]. These studies typically exploit precision measurements of
kinematic distributions and cross sections. At the Large Hadron Collider (LHC)[2], where
many, if not all, of the superpartners are likely to be produced, recent studies in the mini-
mal supergravity framework have demonstrated the possibility of precise determinations of
some superpartner mass di�erences and branching fractions[3, 4]. At the proposed Next Lin-
ear Collider (NLC)[5], numerous studies of the gaugino/Higgsino[6, 7], slepton[6, 8, 9, 10],
squark[10, 11], and Higgs[12] sectors have shown that if superpartners are kinematically
accessible, highly model-independent measurements of their masses and properties may be
made, and underlying SUSY parameters may be determined[13, 14].

A complementary approach, however, is to look for SUSY-mediated rare phenomena that
violate some of the (approximate) conservation laws of the SM. The discovery of these phe-
nomena would be tremendously exciting, providing essential information about the structure
of the theory that could not be obtained from the studies mentioned above. In addition,
we will see that these phenomena may be highly sensitive probes of superpartner mass pat-
terns. This approach is therefore particularly well-suited to hadron colliders, where precision
spectroscopy may be very di�cult.

In this paper, we explore the phenomenon of CP violation arising from SUSY-mediated
violations of lepton 
avor conservation. Lepton 
avor, although conserved in the SM, is
typically violated in any supersymmetric extension of the SM, since the scalar partners of
the leptons must be given mass, and the scalar mass matrices are generally not diagonal in
the same basis as the fermion masses. For instance, in the super�eld basis where the lepton
Yukawa coupling �E is diagonal, the left- and right-handed slepton masses may be written
as

~e�L�m
2
L��~eL� + ~e�R�m

2
R��~eR� ; (1)

where � and � are generational indices. The scalar mass matrices m2
L;R are diagonalized by

unitary matrices WL;R through

m2
L;R =W

y
L;Rm

2
DL;RWL;R ; (2)

where m2
DL;R are diagonal mass matrices. Together with their analogues in the quark sector,

the W matrices are new 
avor mixing matrices analogous to the CKM matrix. If we work
in the mass eigenstate basis for all �elds, the W matrices appear in neutralino and chargino
vertices. For the neutralinos, these vertices are given by the interactions
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~eLiW
�
Li�eL�~�

0 + ~e�LiWLi�~�0eL� + ~eRiW
�
Ri�eR�~�

0 + ~e�RiWRi� ~�0eR� ; (3)

where the Latin and Greek subscripts are generational indices for scalars and fermions,
respectively.

Non-trivial W matrices violate lepton 
avor conservation and may give sizeable contri-
butions to rates for rare processes such as �! e
. For nearly degenerate sleptons, however,
these contributions are suppressed by �m=m through the superGIM mechanism; in the limit
of exact degeneracy, the W matrices can be rotated to the unit matrix, and the gaugino
interactions conserve lepton 
avor. In fact, if the mixing between the �rst two generation
sleptons is not very small, a high degree of degeneracy is required in order to evade bounds
from �! e
. This is an example of the supersymmetric 
avor-changing problem.

In Ref. [15] we considered high energy probes of the W matrices through the 
avor-
violating decays of sleptons at the NLC. This 
avor-violating signal is only suppressed by
the superGIM mechanism when �m <� �, and the suppression factor is �m=�, where �
is the slepton decay width. As �=m is typically 10�2 � 10�3, there is a large range of
parameters with � <� �m <� m in which the rates for rare low energy processes, such as
� ! e
, are suppressed, but the high energy collider signal is not. We considered the case
of ~eR � ~�R mixing, and found that the direct collider probe of W was considerably more
powerful than current bounds from � ! e
. In this paper, we will extend this analysis by
considering the potential of colliders to probe the phases of the W matrices through CP -
violating asymmetries in lepton 
avor violation. We will consider both the LHC and the
NLC, and will �nd that both colliders may be sensitive to small CP -violating invariants.

In addition, we will �nd that any observation of a CP asymmetry implies a particular
structure for the slepton mass matrices, shedding light on the connection between SUSY
breaking and the origin of 
avor. It is well-known that the supersymmetric 
avor-changing
problem can be elegantly solved. The two dominant prototypical schemes may be charac-
terized as follows:

� SUSY breaking is mediated to squarks and sleptons by 
avor-blind gauge interactions
at a scale well below the Planck scale. In this case the sfermions of a given charge
are degenerate, and the W matrices can be rotated to the unit matrix. There are no
interesting 
avor signals in this scheme, other than the scalar spectrum itself.

� Flavor physics of both fermion and scalar sectors is controlled by a spontaneously bro-
ken 
avor symmetry. In this case the experimental signatures of the supersymmetric

avor sector depend on the 
avor symmetry group. Since the 
avor symmetry controls
the quark and lepton masses and mixings, it is frequently the case that theW matrices
have entries that are comparable to the corresponding CKM matrix elements, and that
the scalars of a given charge of the lightest two generations are closely degenerate. It
may also be that the large interactions which give the top quark its mass also give a
large splitting between the scalar of the third generation and the other two scalars.
In this case there are many exciting prospects for discovering supersymmetric 
avor
physics in rare processes [16].

In the simplest versions of both these cases, the CP -violating signals discussed in this paper
will typically be too small to be detected. However, extra interactions may be present in a
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more general theory and there is a general framework in which these CP -violating signals
are large:

� The dynamics that generates the slepton masses | whether from supergravity, gauge,
or other interactions | is 
avor-blind, leading to degenerate scalars. However, the
presence of 
avor-violating scalar mass perturbations can lead, via degenerate pertur-
bation theory, to large mixing angles inW and small scalar non-degeneracies, precisely
the features that lead (as we will show) to large CP asymmetries at colliders.

The outline for the rest of the paper is as follows. In Sec. II we give a rephase-invariant
description of CP violation in the slepton mass matrices. In Sec. III we compute the
CP asymmetries in lepton 
avor-violating events at colliders in two di�erent ways, �rst
directly from �eld theory and then using the more transparent but also more heuristic
language of 
avor oscillations. In Sec. IV we determine the conditions for observable CP
violation. Sec. V contains simple analytic estimates of the CP -violating signals at the LHC
and the NLC, and Sec. VI gives the results of the numerical calculations and discusses
the experimental possibilities for detecting this signal. In Secs. VII and VIII, we consider
constraints on the size of the signal coming from the electron electric dipole moment (EDM)
and � ! e
, respectively. We discuss the implications of observing a CP -violating signal
for models of scalar mass matrices in Sec. IX and draw our conclusions in Sec. X.

II. A REPHASE INVARIANT DESCRIPTION OF SLEPTON CP VIOLATION

In this section, we count the number of relevant CP -violating phases in the WL;R matri-
ces of Eq. (3). These phases allow a variety of CP -violating phenomena which we describe
in terms of a well-motivated and complete set of rephase invariant quantities that are anal-
ogous to the Jarlskog invariant of the CKM matrix. Neglecting the left-right scalar mass
terms, which are suppressed by lepton Yukawa couplings, slepton mixing may be completely
described by the matrices WL and WR of Eq. (3). There are then two 3 � 3 matrices with
a combined 9 + 9 = 18 degrees of freedom. Any physical quantity must be invariant under
rephasings of the slepton and lepton �elds that leave the lepton masses real:

WLi� ! ei�
i
LWLi�e

i�� ; WRi� ! ei�
i
RWRi�e

i�� : (4)

Thus 9 independent phases may be removed. However, one overall rephasing has no e�ect,
and so we can remove 8 degrees of freedom, leaving 10 parameters to describe WL;R. Of
these, 3 + 3 are real rotations and 4 are CP -violating phases.

We now �nd a complete set of CP violation rephase invariants, beginning with the
invariants that can be built out of only one of the two W matrices. As in the SM, there
is only one CP -violating phase associated with a single W matrix, and the corresponding
rephase invariant is

Im
h
Wi�W

�
i�W

�
j�Wj�

i
� eJX

k


�ijk���
 : (5)

eJL and eJR are the supersymmetric analogues to the Jarlskog invariant[17], and the anti-
symmetric tensors "ijk and "��
 simply determine the relative sign. In the next section, we
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will see that the CP asymmetries in left- and right-handed slepton decays at colliders are
directly proportional to eJL;R. The two remaining phase degrees of freedommust involve both
WL and WR. In fact, the dominant contributions to the electron EDM de from phases in the
W matrices are given by one-loop diagrams with internal sleptons and gauginos involving
left-right scalar mass insertions proportional to m� or m� .1 These contributions therefore
require non-trivial 
avor mixing for both left- and right-handed sleptons. If there is only
12 mixing, de is proportional to m�Im[WL21W

�
L22W

�
R21WR22]. On the other hand, if there is

mixing with the third generation but the �rst two generation sleptons are exactly degenerate
(or if there is only 13 mixing), de is proportional to m�Im[WL31W

�
L33W

�
R31WR33]. Since these

two CP -violating quantities are clearly independent and physically meaningful, we choose
the remaining two CP -violating invariants to be

fK12 = Im [WL21W
�
L22W

�
R21WR22] ; fK13 = Im [WL31W

�
L33W

�
R31WR33] : (6)

Every CP -violating quantity will then be a linear combination of the four independent
invariants eJL;R and fK12;13.

It is also instructive to understand the CP -violating phases of the theory in the super�eld
basis where the lepton masses are diagonal but the slepton mass matrices may have o�-
diagonal components. The only phases are then in the 12, 23, and 31 components of the
slepton mass matrices. All physical quantities should be invariant under lepton super�eld
rephasings m2

L;R��
! e�i�

�

m2
L;R��

ei�
�

. If we concentrate on rephase invariants built from a

single mass matrix, the only possibility is Im[m2
12m

2
23m

2
31]. Note that this invariant vanishes

unless there is full 3 generation mixing. It is also easy to see that if two of the slepton
mass eigenvalues are degenerate, this CP invariant vanishes. For instance, if the �rst two
generation sleptons are degenerate atm2

0, we havem
2
�� =

P
iW

�
i�Wi�m

2
i = W �

3�W3�(m2
3�m2

0)
for � 6= �, where mi are the physical slepton masses, and we have used the unitarity of W ,
which implies

P
iW

�
i�Wi� = 0 for � 6= �. Then, Im[m2

12m
2
23m

2
31] = Im[jW31W32W33j2(m2

3 �
m2

0)
3] = 0. It is possible to show that (see Appendix A)

Im
h
m2

12m
2
23m

2
31

i
= eJ(m2

2 �m2
1)(m

2
3 �m2

2)(m
2
1 �m2

3) : (7)

The invariants fK12;13 are similarly related to Im[m2
L

�
12m

2
R12] and Im[m2

L

�
13m

2
R13]. If we only

have mixing between the �rst two generations, then

Im
h
m2

L

�
12m

2
R12

i
= fK12(m

2
L1 �m2

L2)(m
2
R1 �m2

R2) ; (8)

whereas if the �rst two generation sleptons are exactly degenerate,

Im
h
m2

L

�
13m

2
R13

i
= fK13(m

2
L3 �m2

L0)(m
2
R3 �m2

R0) ; (9)

where m2
L0 and m2

R0 are the common scalar masses of the �rst two generation left- and
right-handed sleptons.

1Additional contributions may arise from phases in the A, � and gaugino mass parameters. For

the following discussion, we set these to zero. The justi�cation for this, and the the relevance of

these phases to this study, will be discussed at the end of this section.
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Although not needed in the rest of this paper, the CP -violating phases in the squark
sector may be similarly counted and classi�ed. Again treating the left-right scalar mass
mixings as perturbations (an approximation that may be invalid for the third generation
squarks), an analysis similar to the one above �nds that there are 10 independent phases in
the squark mass matrices.2 These also have rephase invariant descriptions analogous to theeJ and fK invariants de�ned above. In the squark sector there are analogous mixing matrices
WUL, WUR, WDL

, and WDR
. Together with VCKM, four of them are independent (WDL

is
�xed by WUL and the quark and squark masses). From these four matrices, we may form

4 eJ invariants (including the Jarlskog invariant of the CKM matrix), and 2 fK invariants
from each of the 3 pairs of matrices fWUL, WURg, fWDL

, WDR
g, and fWUL, WDL

g. These
10 quantities form a complete set.

So far we have discussed only the phases in theW mixing matrices. Of course, in addition
to these phases, there are other possible sources of supersymmetric CP violation. The usual
SUSY CP problem arises from relative phases between the A and � parameters and the
gaugino masses. In this study, we will examine CP -violating asymmetries in lepton 
avor-
violating events at colliders. These will be seen to be direct measures of the CP -violating
phases in the W matrices, and are insensitive to phases in the A, � and gaugino mass
parameters for the following reasons. First, the � parameter and gaugino masses do not
violate lepton 
avor, and while their phases may cause changes in quantities like the total
production cross sections, they do not contribute to 
avor-violating asymmetries. Second,
while non-universal A parameters do violate lepton 
avor and may contribute to the CP -
violating collider signals through left-right scalar mass terms, these terms are suppressed
by lepton masses. Unless the left- and right-handed sleptons are very nearly degenerate,
the induced left-right mixing is too small to signi�cantly modify the collider CP -violating
asymmetry.

In contrast, the phases in the A and � terms and the gaugino masses may give important
contributions to de. For this reason, if a non-zero electron EDM is discovered, it may arise
from either these terms or the W matrices, and does not necessarily imply a lower bound
on the collider signals discussed here. On the other hand, a bound on de does constrain
possible contributions from the W matrices (in the absence of unexpected cancellations),
and therefore also places an upper bound on our collider signals. In general, the electron
EDM is a complicated function of both the phases in W and the other phases in the A, �
and gaugino mass parameters. However, as we do not know what these other phases are,
we calculate the bounds on W phases from the electron EDM by assuming that the other
phases vanish. The electron EDM is then proportional to the invariants fK12;13 as noted
above. We will see in Sec. VII that the collider signals are observable even if the current
limit on de improves by a factor of 10.

To summarize, we have found a set of 4 rephase invariants that characterize CP violation
in the SUSY lepton sector: eJL and eJR determine the sizes of CP -violating signals at colliders,
while fK12 and fK13 determine the size of the electron EDM. We now consider possible collider
probes of eJL;R.

2The counting for only left-handed quarks and squarks is considered in Ref. [18].
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III. SLEPTON CP ASYMMETRIES

In this section, we derive results for CP asymmetries from slepton production at colliders.
Our signal will be asymmetries between 
avor-violating �nal states, such as e+�� and �+e�.
We will require results for single slepton production, the dominant production mechanism at
hadron colliders where, for example, sleptons are produced in gluino cascades, and also for
correlated slepton pair production, which is most relevant at e+e� colliders. We begin with
a derivation in �eld theory, in which various subtleties will be noted and our approximations
explicitly stated. With these approximations, the results for single slepton production will
be familiar from other contexts, such as B physics, and we will highlight these similarities.
However, the case of pair production is more complicated, and warrants careful treatment.
We conclude this section by rederiving these results in the simpler, but more heuristic,
language of 
avor oscillations.

A. Field theory derivation

We begin with processes involving single slepton production. Such processes are most
relevant for hadron colliders, where a single slepton may be produced in a gluino or squark
cascade decay. The general form for such a process is f1f2 ! e+�X~e�i ! e+�Xe

�
� Y , where

the subscripts i, � and � are generational indices.3 The initial state partons are denoted by
f1 and f2, and X and Y are m- and n-body �nal states, respectively. In the simplest case,
sleptons decay directly to LSPs, so n = 1 and Y = ~�01. For nearly massless f1 and f2,

��� � �(f1f2 ! e+�Xe
�
� Y )

=
Z (2�)4

2ŝ
jM��j2 d�m+n+2(P ; pe+� ; pX1

; : : : ; pXm ; pe�
�
; pY1 ; : : : ; pYn) ; (10)

where P = pf1 + pf2, ŝ = P 2, and the phase space factor and its decomposition are

d�l(P ; p1; : : : ; pl) � �4(P �
lX

i=1

pi)
lY

i=1

d3pi

(2�)32Ei

= d�j+1(P ; q; p1; : : : ; pj)d�l�j (q; pj+1; : : : ; pl)(2�)3dq2 ; (11)

where q2 = (
Pl

i=j+1 pi)
2. The amplitudeM�� may be written as

M�� =
X
i

MPWi�

i

q2 �m2
i + im�

W �
i�MD ; (12)

where the sum is over all slepton generations that may be produced on-shell. MP is the
amplitude for f1f2 ! e+X~e� in the absence of 
avor violation, where e here represents

3In fact, for sleptons produced in decays of Majorana particles, the same �nal state also arises

from another process, f1f2 ! e��X~e+i ! e��Xe+�Y , which must be included. A modi�cation of the

following analysis is necessary, but leads to results identical to those encapsulated in Eqs. (17) and

(21). For notational simplicity, we ignore this complication.
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any one of the available lepton 
avors, and MD is the amplitude for decay ~e� ! e�Y ,
also in the absence of 
avor violation. We assume that the generational dependence of
these amplitudes, for example, through variations in slepton mass or dependence on Yukawa
couplings, is negligible. We also neglect generational di�erences in the widths m�.

With this amplitude, and substituting the phase space decomposition of Eq. (11) with
l = m+ n+ 2 and j = m+ 1,

��� =
Z (2�)4

2ŝ
jMP j2 d�m+2(2�)

3 jMDj2 d�n+1

X
ij

Wi�W
�
i�W

�
j�Wj�Aij(q

2)dq2 ; (13)

where

Aij(q
2) =

i

q2 �m2
i + im�

�i
q2 �m2

j � im�

=
1

q2 � �m2
ij � 1

2
�m2

ij + im�

1

q2 � �m2
ij +

1
2
�m2

ij � im�
; (14)

and we have de�ned �m2
ij = (m2

i + m2
j)=2 and �m2

ij = (m2
i � m2

j)=2 � 2m�mij, with
�mij = mi �mj. For �m

2
ij;m�� �m2

ij, we may use the approximation

1

(z � a+ ib)(z + a� ib) =
1

2(a� ib)

"
z � a� ib

(z � a)2 + b2
� z + a+ ib

(z + a)2 + b2

#

� 1

2(a� ib)
[i��(z � a) + i��(z + a)]

� 1

1 + i(a=b)

�

b
�(z) (15)

to write Aij(q2) � Aij
�
m�
�(q2� �m2

ij). Substituting this form of Aij(q2) into Eq. (13) yields

��� =
Z X

ij

Wi�W
�
i�W

�
j�Wj�Aij�(q

2 � �m2
ij)dq

2

�
"
(2�)4

2ŝ
jMP j2 d�m+2

# "
1

�

(2�)4

2m
jMDj2 d�n+1

#
; (16)

and so the general form for the 
avor-violating cross section is

��� = S���0

S�� =
X
ij

Wi�W
�
i�W

�
j�Wj�Aij

Aij =
1

1 + ixij
; (17)

where we de�ne

xij � �mij=� ; (18)

in analogy to the variables xd and xs in B physics. The cross section �0 = �(f1f2 !
e+X~e�)B(~e�! e�Y ) is the analogous cross section in the absence of 
avor violation, where
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again e here represents any one of the available lepton 
avors. The sum is to be taken over
all slepton generations that may be produced on-shell. Note that S�� is real, since Aij = A�ji.
If the mass splittings are much larger than the widths, xij is large and Aij � 0 for i 6= j,
and so only terms with i = j contribute. However, for xij <� 1, interference terms play an
important role.

The analysis above assumes that slepton 
avor violation arises from single slepton pro-
duction. We now consider the case of correlated slepton pair production. Such production
may occur at hadron colliders when sleptons are created in Drell-Yan production, but typ-
ically, these cross sections are too small to be of interest in this study. At e+e� colliders,
however, the dominant slepton production mechanism is slepton pair production through
s-channel photon and Z processes and t-channel neutralino exchange. These processes are
then e+e� ! ~e+i ~e

�
j ! e+�Xe

�
� Y , where X and Y are again m- and n-body �nal states,

respectively.4 For this process, the most general amplitude is

Mpair
�� =

X
i

Ms
P

i

p2 �m2
i + im�

Wi�M+
D

i

q2 �m2
i + im�

W �
i�M�

D

+
X
jk

Mt
PWj�

i

q2 �m2
j + im�

W �
j1M+

DWk1

i

q2 �m2
k + im�

W �
k�M�

D ; (19)

whereMs
P and Mt

P are the s- and t-channel production amplitudes for e+e� ! ~e+~e�, and
M+

D and M�
D are the decay amplitudes for ~e+ ! e+X and ~e� ! e�Y . The cross section is

then

�
pair
�� =

Z (2�)4

2ŝ

"
jMs

P j2
X
il

Wi�W
�
i�W

�
l�Wl�Ail(p

2)Ail(q
2)

+

 
Ms

PMt�
P

X
imn

Wi�W
�
i�W

�
m�Wm1W

�
n1Wn�Aim(p

2)Ain(q
2) + h.c.

!

+
���Mt

P

���2 X
jkmn

Wj�W
�
j1Wk1W

�
k�W

�
m�Wm1W

�
n1Wn�Ajm(p

2)Akn(q
2)

3
5

�dp2dq2d�2(2�)
3
���M+

D

���2 d�m+1(2�)
3
���M�

D

���2 d�n+1 : (20)

Letting �ss0 , �
st
0 , and �

tt
0 denote the products of B(~e+ ! e+X)B(~e� ! e�Y ) and the 
avor-

conserving \cross sections" corresponding to production amplitudes jMs
P j2, Ms

PMt�
P , and

jMt
P j2, respectively, we �nd

�
pair
�� = Sss���

ss
0 +

�
Sst���

st
0 + h.c.

�
+ Stt���

tt
0

Sss�� =
X
ij

Wi�W
�
i�W

�
j�Wj�A

2
ij

Sst�� =
X
ijk

Wi�W
�
i�W

�
j�Wj1W

�
k1Wk�AijAik

Stt�� = S�1S1� : (21)

4For simplicity, throughout this section, we consider only ~lL~lL or ~lR~lR production. Associated

production of ~lL~lR is also possible through t-channel neutralino exchange.
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Stt�� decomposes into a product of single slepton factors S��, as expected for uncorrelated
production from two vertices.

The general expressions for ��� and �
pair
�� given in Eqs. (17) and (21) may be applied to

a number of interesting scenarios. In particular, let us consider the case where

W =

0
B@ cos � sin � 0
� sin � cos � 0

0 0 1

1
CA ; (22)

and both ~e and ~� may be produced on-shell. Substituting this W into Eq. (17) and letting

�ij �
x2ij

2(1 + x2ij)
; (23)

in analogy to the parameters �d and �s in B physics, we �nd

S12 = 4�12 sin
2 � cos2 � ; (24)

reproducing the 2 generation 
avor-violating result given in Ref. [15]. The pair production
case is more complicated, but the �nal results are

Sss12 = 4�12(3 � 4�12) sin
2 � cos2 � (25)

Re
h
Sst12

i
= 2�12(3 � 4�12) sin

2 � cos2 � (26)

Stt12 = S11S12 = S12(1� S12) : (27)

These quantities are unchanged if ~� pairs may also be produced.
Finally, we derive expressions for CP -violating asymmetries. In the presence of CP

violation, the cross sections ��� = �(f1f2 ! e+�Xe
�
� Y ) and ��� = �(f1f2 ! e+�Xe

�
�Y ) are

no longer equal. For the case of single slepton production, it is easy to show that, following
the analysis above,

��� � S�� � S�� =
��� � ���

�0
= �4

X
i<j

Im
h
Wi�W

�
i�W

�
j�Wj�

i
Im [Aij] : (28)

Again, the sum is over sleptons that may be produced on-shell. We therefore reproduce
the familiar result that CP violation requires the presence of at least two amplitudes that
di�er both in their CP -odd (\weak") phases and their CP -even (\strong") phases. The
W -dependent part may be written as

Im
h
Wi�W

�
i�W

�
j�Wj�

i
= eJX

k


"ijk"��
 � eJ ij�� ; (29)

where eJ is the supersymmetric analogue to the Jarlskog invariant introduced in Sec. II.
All single slepton CP -violating quantities are given in terms of eJ, the single CP -violating
invariant that may be formed from one 3�3 slepton mixing matrix. The CP -violating single
slepton cross section asymmetry is then

��� = �4
X
i<j

eJ ij��Im[Aij] = 4
X
i<j

eJ ij�� xij

1 + x2ij
: (30)
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For all � 6= �, the ��� are equal up to a sign, and so we see that there is only one CP -
violating quantity, and the e�, �� , and �e asymmetries are all measurements of the same
underlying CP -violating parameter.

For pair production, the asymmetry is

�
pair
�� � �

pair
�� = �ss

���
ss
0 +

�
�st

���
st
0 + h.c.

�
+�tt

���
tt
0 ; (31)

where

�ss
�� � Sss�� � Sss�� = �4

X
i<j

eJ ij��Im[A2
ij] (32)

�st
�� � Sst�� � Sst�� = 2i

X
ijk

Im[Wi�W
�
i�W

�
j�Wj1W

�
k1Wk�]AijAik (33)

�tt
�� � Stt�� � Stt�� = S�1S1� � S�1S1� = �1�S1� ��1�S1� : (34)

The pair asymmetry must also be proportional to eJ, and it is clear from the expressions
above that �ss

�� and �tt
�� are. For �st

��, this dependence may also be made manifest, as is
shown in Appendix B.

B. Oscillation derivation

In this section, we show how the above results derived directly from �eld theory can be
reproduced using the more familiar language of 
avor oscillations. Suppose that at time
t = 0, we produce e+� in association with a gauge eigenstate slepton ~e�� . We denote this
initial state by j (0)i = j��i. This state then oscillates, and the amplitude for the slepton
to decay into e�� is

A��!��(t) = h��je�imte��t=2j��i =
X
i

Wi�W
�
i�e

�imite��t=2 ; (35)

where the sum is over all generations.5 The corresponding amplitude for anti-sleptons,
A�+!�+(t), is the same with W $ W �. The probability that e�� is produced between t

and t + dt is �dtjA��!��(t)j2, so the total probability of producing an e+� e
�
� �nal state is

(throughout we use
R1
0 �dte�i(mi�mj)te��t = �=(� + i(mi �mj)) � Aij)

P��!�� =
Z 1
0

�dtjA��!��(t)j2 =
X
ij

Wi�W
�
i�W

�
j�Wj�Aij ; (36)

which reproduces Eq. (17) in the previous section.

5The oscillation picture is applicable only if all the sleptons are nearly degenerate. Otherwise, the

amplitude for producing the initial gauge eigenstate slepton is ill-de�ned. For instance, suppose

that the gauge eigenstate is a superposition of a mass eigenstate beneath production threshold and

a mass eigenstate above threshold. The amplitude for producing the gauge eigenstate slepton is

clearly not well-de�ned in this case.
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Turning now to the case where correlated sleptons are produced from s- and t-channel
diagrams, the initial state is

j (0)i =Ms
P

X



j
+; 
�i+Mt
P j1+; 1�i ; (37)

where Ms
P and Mt

P are the s- and t-channel amplitudes, respectively. The amplitude for
producing e+� at time t1 and e

�
� at time t2 is

A
pair
�+��(t1; t2) =Ms

P

X



A
+!�+(t1)A
�!��(t2) +Mt
PA1+!�+(t1)A1�!��(t2) : (38)

However,

X



A
+!�+(t1)A
�!��(t2) =
X

ij

W �
i
Wi�Wj
W

�
j�e

�imit1e��t1=2e�imjt2e��t2=2

=
X
i

Wi�W
�
i�e

�imit1e��t1=2e�imit2e��t2=2 ; (39)

so

Apair
�+��(t1; t2) =Ms

P

X
i

Wi�W
�
i�e

�imit1e��t1=2e�imit2e��t2=2

+Mt
PA1+!�+(t1)A1�!��(t2) : (40)

Therefore, the total probability of producing e+�e
�
� is

P pair
�+�� =

Z 1

0
�dt1�dt2jApair

�+��(t1; t2)j2

= jMs
P j2

X
ij

Wi�W
�
i�W

�
j�Wj�A

2
ij

+

0
@Ms

PMt�
P

X
ijk

Wi�W
�
i�Wj1W

�
j�W

�
k1Wk�AijAik + h.c.

1
A

+jMt
P j2P1+!�+P1�!�� ; (41)

in agreement with Eq. (21) of the previous section.

IV. SCENARIOS WITH OBSERVABLE CP VIOLATION

In the previous section, we derived formulas for CP -violating cross sections, which de-
pended on the slepton mixing angles and mass splittings. In this section, we examine these
expressions and determine what conditions must be met to yield promising CP -violating
signals. We will �nd that CP violation in the lepton sector may be large in two scenarios.
These two scenarios will be used in the following sections to determine the typical reaches
in parameter space of collider experiments.

The CP -violating di�erence in cross sections was derived in Sec. IIIA for both single
and correlated pair slepton production. Here we will analyze the simpler case of single
slepton production, as the conclusions are based on general arguments that apply in both

12



cases. Recall that the CP -violating di�erence in cross sections in the case of single slepton
production is given by

��� =
��� � ���

�0
= 4

X
i<j

eJ ij�� xij

1 + x2ij
: (42)

In the typical case where all three slepton generations are produced,

�e� = ��� = ��e = 4 eJ
 

x12

1 + x212
+

x23

1 + x223
+

x31

1 + x231

!
: (43)

For a signi�cant CP -violating signal, both eJ and the kinematic part depending on the mass
splittings xij � �mij=� must be fairly large.

Concentrating �rst on eJ, we recall that in the parametrization

W =

0
B@ c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i� c12c23 � s12s23s13ei� s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i� c23c13

1
CA ; (44)

where sij = sin �ij and cij = cos �ij[19, 20], the supersymmetric Jarlskog invariant iseJ = s12s13s23c12c
2
13c23 sin �, with maximal value 1

6
p
3
� 0:096. Large CP violation therefore

requires large three generation mixing and a large CP -violating angle. The CP -violating
signal for single slepton production is completely determined by eJ . However, to evaluate
backgrounds, and to compute the CP -violating signal at the NLC from correlated slepton
pair production, we need to know the individual angles �ij of the W matrix, rather than
just the combination eJ . For the numerical calculations of the following sections, we choose

� � �12 = �23 = �13 : (45)

In this parametrization, eJ = sin3 � cos4 � sin �, and for sin � =
q

3
7
(sin 2� = 4

p
3

7
� 0:99),eJ attains its maximal value 48

p
3

343
p
7
� 0:092. This simplifying assumption therefore captures

nearly all of the available range of eJ.
Turning now to the kinematic factor, it is clear that it may be large only if at least one

xij is near 1, since each term is maximal for xij = 1, and drops o� for larger and smaller
xij. In addition, since x12 + x23 + x31 = 0, the signal is suppressed if any pair of sleptons is
highly degenerate, in accord with Eq. (7). There are therefore two possible scenarios with
large CP violation: either (I) one xij is O(1) and the other two are much larger than 1, or
(II) all three xij are roughly O(1). As will be discussed in Sec. VIII, the three sleptons must
have some degree of degeneracy (xij <� 10 � 100) to ensure that the large mixing angles of
W do not induce too large a branching ratio for �! e
. For concreteness, we assume that
m1 > m2 > m3 and in each scenario we parametrize the mass splittings in terms of a single
variable x:

Scenario I : x � x12 ; 0:1 � x � 10 ; x23 = 10 (46)

Scenario II : x � x12 = x23 ; 0:1 � x � 10 : (47)

With these parametrizations, in both Scenarios I and II the signal and background cross
sections depend on only three parameters: x, �, and �.

In summary, we can identify the necessary features of the slepton mass matrices if a
CP -violating slepton oscillating signal is to be visible at future colliders:
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1. The W matrices must have large CP - and 
avor-violating angles.

2. The two sleptons of highest degeneracy should have �m of order �, giving x of order
unity.

3. All three sleptons must have some degree of degeneracy, so that xij <� 10 � 100.

There conditions may be satis�ed in two regions of parameter space, which we denote Sce-
narios I and II.

V. ANALYTIC ESTIMATE OF THE LHC AND NLC SIGNALS

CP violation in the slepton sector may be detected at colliders by considering a sample
of dilepton events and observing a statistically signi�cant asymmetry

A � S

B
=
Ne+� e

�

�
�Ne+

�
e��

Ne+� e
�

�
+Ne+

�
e��

; (48)

where � and � are generational indices. The numerator is the CP -violating signal. The
denominator, the \background," includes all events that pass the cuts, and includes contri-
butions from the 
avor-changing slepton events themselves, as well as other backgrounds.
To maximize the statistical signi�cance of the asymmetry, we must isolate a large and pure
sample of slepton events.

In the following section, we will present precise calculations of the signal and backgrounds
at the LHC and NLC. In this section, however, we give rough order-of-magnitude estimates,
with a view to gaining a general understanding of what ranges of 
avor parameters may
be probed. The validity of these estimates is justi�ed for certain SUSY parameters by the
detailed analysis in the following section.

For optimal mass splittings, the signal is roughly S � �S" eJL. L is the total integrated
luminosity, and �S is the production cross section of the relevant superparticles | squarks
and gluinos for hadron colliders, and sleptons for lepton colliders (see below). The e�ciency
" is the fraction of such superparticle events that end up in the �nal sample of slepton events
(for any one of the available slepton generations) and therefore includes all branching ratios
and kinematic cut e�ciencies. Denoting the background by B = �BL, we �nd that a 3�
signal requiring S > 3

p
B implies that a CP -violating signal may be observed for

eJ >� 3

�S"

r
�B

L
; (49)

where the cross sections are in fb, and L is in fb�1.
At the LHC with

p
s = 14 TeV, the most promising source of sleptons is in cascade

decays (~g !) ~qL ! ~�02 ! ~l! ~�01. Such cascades may be prominent when the charginos and
neutralinos are gaugino-like, and m~l < m~�0

2
. The e�ciency is typically " � 1%. The back-

ground is dominated by 
avor-changing slepton events and gluino/squark pair production
leading to two leptonically-decaying charginos. Assuming L = 100 fb�1 and m~g;m~q � 300
(700) GeV, the cross sections of gluino/squark pair production and the background we may

14



expect are �S � 1000 (10) pb and �B � 1000 (10) fb, and from Eq. (49) we �nd that a 3�
signal requires eJ >� 10�3 (10�2).

At the LHC the e�ciency " is a product of many factors. Of the total strong production
cross section, only events containing ~qL may produce sleptons, as right-handed squarks
decay directly to q ~�01. In contrast, B(~qL ! q ~�02 (q ~�

+
1 )) = 1=3 (2=3), since B(~qL ! q ~�01)

is suppressed relative to these by hypercharge couplings. Decays to charginos are also
not useful, as the lepton 
avor-changing information is carried o� in neutrinos.6 Another
reduction in e�ciency arises in the branching fraction B(~�02 ! e+� e

�
� ~�

0
1). Assuming for

simplicity that the produced sleptons are left-handed,

B(~�02 ! e+�e
�
� ~�

0
1) =

S��

2N
; (50)

where N = 3 is the number of generations of sleptons to which ~�02 can decay, and the factor
of 1/2 accounts for the fact that we include only the decays to charged sleptons. Finally,
there is the e�ciency of kinematic cuts, which is typically >� 10%.

At the NLC sleptons are produced directly in pairs. The signal is therefore not degraded
by branching ratios, and typical e�ciencies for the kinematic cuts are " � 30%. For corre-
lated pair production, the signal is no longer simply proportional to eJ . However, for a rough
estimate, we can again apply the above analysis. Assuming 200 GeV sleptons are produced
at a

p
s = 500 GeV collider with L = 50 fb�1, the signal cross section is �S � 300 fb. The

background is largely 
avor-violating slepton events and so varies with eJ ; in the regions ofeJ we can probe, �B � 10 fb. A 3� signal requires eJ >� 10�2. However, for L = 500 fb�1, we
expect to be able to probe to the eJ � O(10�3) level.

In this paper, we will concentrate on signals at the LHC and NLC, because, as seen
from the above rough estimates, these machines o�er the possibility of probing eJ to the
level of 10�3, well below the maximum of value of 1

6
p
3
. However, before analyzing these

colliders' capabilities in detail, it is worthwhile to consider whether such signals may be seen
at LEP II or the Tevatron. At LEP II with

p
s = 190 GeV, for slepton masses of 80 GeV,

just above the current bound, �S may be � 500 fb, depending on the neutralino masses.
Systems of cuts for 
avor-conserving slepton events[23] may be adopted for 
avor-violating
events[15] and typically give values of " � 40% � 60% and �B � 10 � 100 fb. Assuming a
total integrated luminosity of 500 pb�1, we found in Ref. [15] that lepton 
avor violation
could indeed be observed for large mixing angles. Substituting these ranges of quantities
into Eq. (49), we �nd the requirement eJ >� 0:04�0:2; an observable CP -violating signal may
therefore be possible for near-maximal eJ . At Run II and future upgrades of the Tevatron
with

p
s = 2 TeV, if squark and gluino masses are in the region of 200 GeV, the total

strong SUSY production cross section is �S � 10 pb. Given L � 2 � 30 fb�1, the number
of signal events is roughly only an order of magnitude below the number of events at the
LHC with 700 GeV gluinos and squarks. It is therefore possible that 
avor-violating slepton
signals could be observed, and possibly even CP -violating asymmetries could be seen for

6For the case that ~��1 can decay to all three generations of sleptons, the branching fraction for

decays ~��1 ! e�� ~�
0
1 and ~�+1 ! e+� ~�

0
1 are both proportional to

P
� S�� = 1, and so do not contribute

to a CP asymmetry.
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near-maximal eJ . However, such possibilities depend crucially on many factors, such as the
e�ectiveness of cuts to isolate the slepton signal from t�t and other backgrounds, and will
not be explored in detail here.

VI. EXPERIMENTAL POSSIBILITIES FOR THE LHC AND NLC

In this section, we will consider the possibilities for detecting slepton CP violation in two
experimental environments: the LHC at CERN and the NLC, a proposed high energy linear
e+e� collider. The sensitivity of these two colliders to slepton CP violation is dependent on
many of the underlying SUSY parameters. These parameters set the masses and branching
fractions that determine the number of sleptons produced. In addition, they �x the rates
and kinematic distributions of the many background processes, which determine the extent
to which a pure slepton signal may be isolated. A comprehensive analysis would require a
scan of parameter space and optimization of cuts for each parameter set and is beyond the
scope of this study.

Instead, to gain an understanding of what sensitivities are typically achievable and what
aspects of the sparticle spectrum are most important, we will limit our analysis by consid-
ering a particular set of SUSY parameters for each of the two colliders. This choice will
determine our signal and background rates, and will also allow us to use systems of cuts
that have been developed previously. After presenting the results, we will also discuss the
implications for our analysis of variations away from these parameters.

A. LHC

The LHC is a pp collider with
p
s = 14 TeV and luminosity L � 10{100 fb�1/yr. At

hadron colliders, sleptons may be produced (1) directly in pairs through Drell-Yan processes,
(2) singly in cascade decays of electroweak gauginos that are produced in pairs through
Drell-Yan processes, and (3) singly in squark and gluino cascade decays. While, for certain
parameters, sleptons may be discovered through the �rst two production mechanisms[24],
the event rates are in general too low for the precision studies considered here. We therefore
examine the third possibility. To do so, we begin by considering a point in parameter space
where a promising number of sleptons are produced in gluino and squark cascades. This
point, analyzed in Refs. [3, 4], is given by minimal supergravity boundary conditions7

m0 = 100 GeV; m1=2 = 300 GeV; A0 = 300 GeV; tan� = 2:1; � > 0 ; (51)

with resulting weak scale SUSY parameters

7Of course, strictly in minimal supergravity, all the sleptons are exactly degenerate at MPl and

lepton 
avor is conserved. However, given that all the sleptons must be nearly degenerate to

produce a CP -violating signal, we simply use the minimal supergravity case analyzed in Refs. [3, 4]

to obtain the relevant superpartner mass spectrum and branching ratios, which are una�ected by

the small slepton non-degeneracies and mixing angles required for our CP -violating signal.
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M1 = 126 GeV; M2 = 252 GeV; M3 = 752 GeV; � = 479 GeV : (52)

The more relevant masses, cross sections, and branching fractions are given in Tables I, II,
and III. At this parameter point, a large number of sleptons are produced through the
cascades (~g !) ~qL ! ~�02 ! ~lR ! ~�01. The large rate results from the fact that in minimal
supergravity, ~�02 � ~W 3, and ~�01 � ~B, and so decays ~qL ! ~�01, though favored by phase
space over ~qL ! ~�02, are highly suppressed by hypercharge couplings. Note that left-handed
sleptons are heavier than ~�02 and so are almost never produced.

Cuts to isolate such slepton events are presented in Ref. [4]. As noted below Eq. (30), the
CP -violating cross section di�erences ��� in the e�, �� , and �e channels are all identical.
Here we will consider the subset of slepton events with e��� �nal states and try to measure
the asymmetry in this event sample. Other asymmetries, for example, in e��� events, where
the pion results from � decay, also could be used. These asymmetries su�er from � branching
fractions, and require that hadronic jets not be misidenti�ed as � decay products. They are,
however, free of backgrounds from ~e and ~� production, whereas the e��� asymmetry su�ers
from ~� ! � ! l backgrounds, as discussed below. Of course, as all of these cross section
di�erences ��� are predicted to be equal, they could ultimately be combined to yield the
most powerful measurement of slepton CP violation.

To quantify the statistical signi�cance, we divide the signal and background into two
parts and de�ne

A � S

B
=
S
~l + S0

B
~l +B0

; (53)

where

S
~l = N

~l
e+� e

�

�

�N
~l
e+
�
e��
; S0 = N0

e+� e
�

�

�N0
e+
�
e��
; (54)

B
~l = N

~l
e+� e

�

�

+N
~l
e+
�
e��
; B0 = N0

e+� e
�

�

+N0
e+
�
e��
: (55)

The superscripts \~l" and \0" denote events arising from slepton production and events from
other sources, respectively. The statistical uncertainty in A is given by �2A = (1 �A02)=B,
where A0 = S0=B is the asymmetry in the absence of slepton CP violation. If there is no
asymmetry from other sources, A0 = 0, and an N� signal requires simply jSj=

p
B > N .

For hadron colliders, ignoring possible di�erences in l+ and l� detection e�ciencies,
the source of the CP -violating numerator of Eq. (53) is entirely slepton events, and so
S0 = 0. Since we are looking at e��� events, these slepton events include events involving
leptonically-decaying � leptons. The total signal is therefore

S = S
~l = (S12 � S21)�0"llL +B�(S13 � S31 � S23 + S32)�0"l�L ; (56)

where l = e; �, B� � B(� ! l���) � 18%, and L is the integrated luminosity. The e�ciencies
for accepting ll and l� slepton events are denoted by "ll and "l� , and these include all
branching fractions, kinematic cut e�ciencies, and detector acceptances. Note that the
contributions from � decays always reduce the signal S, since S13 � S31 � S23 + S32 =
��31 ��23 = �2�12 = �2(S12 � S21); these processes are therefore more dangerous than
other backgrounds, which only dilute the asymmetry by increasing the background B.
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The backgrounds include slepton events, as well as additional processes, and are given
by

B
~l = (�ll + �l� + ���)L (57)

B0 = (�SUSY + �SM)L ; (58)

where

�ll = (S12 + S21)�0"ll (59)

�l� = B�(S13 + S31 + S23 + S32)�0"l� (60)

��� = 2B2
�S33�0"�� (61)

�SUSY = �~��
1
~��
1
"~��

1
~��
1

(62)

�SM = �tt"tt + �WW "WW : (63)

For each process, �" denotes the cross section into opposite sign, unlike 
avor dilepton
events, again including all branching ratios, cuts, and detector e�ciencies. The cross section
�ll is the irreducible background resulting directly from slepton 
avor violation, and �l�
(���) is the cross section of e��� events resulting from slepton production with one (two)
leptonically-decaying � lepton(s). Other than slepton events, the leading SUSY background
process is events in which both gluino/squark cascade decays result in charginos, which then
both decay leptonically. These cascades are of the form (~g !) ~qL ! ~��1 ! l, and the cross
section is denoted by �SUSY above. The leading SM backgrounds are t�t andWW production,
which together form �SM.

The number of opposite sign dilepton events passing all cuts has been plotted in Ref. [4].
From these results, one may determine the cross sections from the various sources after
all cuts, being careful to remember that opposite sign, like 
avor dilepton events resulting
from ~��1 ~�

�
1 , t�t, and WW events are included in the plot, but are not to be included in our

background. For the sample of events in the range 0 < Mll < 110 GeV = Mmax
ll , where

Mmax
ll = m~�0

2
�m~�0

1
is the maximal value allowed in slepton events, �0"ll; �0"l� ; �0"�� � 80

fb, �~��
1
~��
1
"~��

1
~��
1
� 6 fb, and �tt"tt+�WW "WW � 2 fb. Note that, although the chargino back-

ground depends on a number of additional SUSY parameters, its size may be determined by
considering same sign dilepton events. In addition, since dileptons in all of the backgrounds
have dilepton masses Mll that may extend beyond m~�0

2
�m~�0

1
, the size of the backgrounds

may be estimated by extrapolating from this region.
Given these results, for each of the scenarios speci�ed above, the signal and background

are completely determined by the parameters x = �m=�, �, and �. In Fig. 1, we plot
contours of constant CP -violating cross section S=L for Scenario I in the (sin 2�;�m=�)
plane for �xed sin � = 1. For the point we are considering, �(~lR ! l~�01) = 0:13 GeV =
8:1 � 10�4m. We see that there may be a large CP -violating signal for �m � O(�). In
Fig. 2, we incorporate the e�ects of background and plot 3� discovery contours in the same
plane with sin � = 1. The wide contour is the discovery limit for the point we have considered,
given an integrated luminosity of 100 fb�1, the luminosity expected for one detector in one
year at high luminosity. (The other contours will be described below.) The behavior of the
contours very near sin 2� = 1 is an artifact of our parametrization; as noted in Sec. IV, eJ
reaches its maximum at sin 2� � 0:99. The overall shape of the contour may be very roughly
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understood by neglecting variations in the background and considering the behavior of the
signal S. For �m� � (x12� 1),

S � �12 = 4
X
i<j

eJ ij12 xij

1 + x2ij
� 4 eJ x12

1 + x212
� 4 eJ=x12 � �3=�m ; (64)

whereas for �m� � (x12� 1),

S � �12 � 4 eJ x12

1 + x212
� 4 eJx12 � �3�m : (65)

For �m � �, the reach in sin 2� is maximal, and sin � = 0:23 and a supersymmetric Jarlskog
invariant eJ as low as 0.01 may be probed. We note that, while CP violation requires general
three generation mixing, large CP -violating e�ects do not require all three generations to
be degenerate to within �.

If such a scenario were actually realized in nature, these results could be improved with
optimized cuts. For example, for slepton events, Mll peaks near its maximum, and so by
considering only events with 80 GeV < Mll < 110 GeV, the signal to background ratio is
improved. Such a cut is also e�ective in removing the � ! l backgrounds, and would lead
to improvements in the results.

Far greater variations in these results arise if di�erent SUSY parameters are considered.
An obvious dependence is on the gluino and squark masses. For the example considered,
m~g = 767 GeV, and m~qL = 662 GeV. For lower masses, the cross sections for squark and
gluino production increase rapidly, and, if the relevant branching fractions and cut e�ciencies
are not greatly altered, the sample of slepton events increases dramatically. Conversely, as
the gluino and squark masses increase, the results deteriorate. To give an indication of the
dependence of our results on these masses, we have also plotted 3� discovery contours in
Fig. 2 for scenarios with values of m~g = m~q as labeled. For these contours, we make the naive
assumption that the signal and background cross sections scale with �(~g~g) + �(~q~q) + �(~g~q)
relative to our prototype point. With this assumption, we see that in the favorable case of
a light gluino with mass 300 GeV, a supersymmetric Jarlskog invariant as low as eJ = 10�3

may be probed. Of course, branching fractions and e�ciencies are also highly dependent on
the various SUSY parameters, as will be discussed below, and in fact one generally expects
the di�culty of isolating SUSY signals above SM background to increase as the superpartner
masses decrease. These contours do, however, give an indication of the strong dependence
on gluino and squark masses, and show that far stronger probes of eJ may be possible if
these masses are signi�cantly lower.

In Fig. 3, we have plotted the analogous contours for Scenario II, the case of three
generation near degeneracy. The reach in sin 2� is virtually unchanged, as is the behavior
for �m� �. For �m� �,

S � �12 = 4
X
i<j

eJ ij12 xij

1 + x2ij
= 4 eJ

"
x12

1 + x212
+

x23

1 + x223
+

x31

1 + x231

#
� �3x312 � �3(�m)3 ; (66)

where the term linear in �m vanishes since x12 + x23 + x31 = 0. For Scenario II, therefore,
the signal is more strongly suppressed for small �m than in Scenario I.

We have seen that the possibility of probing small CP -violating parameters at the LHC
exists. However, as noted above, the size of the CP -violating signal is governed by a number
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of factors, which we now discuss in greater detail. First, as is obvious from the �gures, given
a sample of slepton events, CP violation is only signi�cant if �m is within an order of
magnitude or so of �. Classes of models in which this arises naturally will be discussed
below in Sec. IX, and we therefore defer comments on the likelihood of this possibility.

In addition, the size of the slepton event sample is governed by several conditions on
the sparticle masses and decay patterns. For this analysis, the strength of the LHC lies in
the fact that leptonic events, which stand out above backgrounds, are produced with strong
interaction rates. The power of this analysis therefore depends crucially on the number of
on-shell sleptons produced in the decays of gluinos and squarks. We may discuss each step in
the cascade (~g !) ~qL ! ~�02 ! ~l. To initiate this decay chain, it is of course important that
there be large cross sections for gluinos and squarks; the strong dependence on their masses
was discussed above. If we are in the gaugino region, where the lightest two neutralinos are
gaugino-like, slepton events arise from ~qL, as decays (~g !) ~qR ! ~�01 bypass sleptons. This
event rate could be much larger if, for example, m~qR > m~g > m~qL, as then the branching
fraction of ~g ! ~qL would be nearly 100%. In the gaugino region, it is also essential that
m~l < m~�0

2
.8 Possible decay modes of ~�02 are ~�02 ! h~�01; Z ~�01;

~lRl; ~lLl. Neglecting obvious

phase space considerations, if the decay ~�02 ! ~lL is open, it will dominate, as all other decay
modes are suppressed by mixing angles in the gaugino region. The slepton CP violation
would then measure eJL with very little contamination from eJR, and with large statistics
from B(~�02 ! ~lL) � 100%. If the ~lL decay mode is closed, but the ~lR mode is open, we may
still measure eJR. However, this measurement is greatly degraded if the decay ~�02 ! h is
open, as this is less suppressed by mixing angles in the gaugino region.

In the minimal supergravity example considered above, the total cross section for gluino
and squark pair production was 15.3 pb, and the slepton cross section in the �nal event
sample was 240 fb. Thus, including branching ratio and kinematic cut e�ciencies, only 1.6%
of the total strongly interacting sparticle production was available for use in our analysis. In
that example, ~�02 ! ~lL decays were closed and decays ~�02 ! h were open, and so B(~�02 ! ~lR)
was only 36%. In a more favorable scenario in which either m~lL

< m~�0
2
or m~lR

< m~�0
2
< mh,

the branching ratio to sleptons could be nearly 3 times larger. Clearly the results of the
previous analysis would be noticeably more powerful in such a scenario. For comparison,
we present in Fig. 4 the results of a scenario in which the event sample is increased relative
to Fig. 3 by a factor of 10. Such an improvement could come from improved branching
ratios, the optimized cuts discussed above, the combination of all lepton asymmetries, or by
increasing the assumed integrated luminosity to include multi-year event samples and both
detectors.

Of course, the scenario we considered was already optimistic in the sense that sleptons
were in fact produced in gluino and squark cascades. For m~l < m~�0

2
, it is likely that some

probe of slepton CP violation will be possible, although the sensitivity depends on the
many issues discussed above. However, in the gaugino region, if m~l > m~�0

2
, such an analysis

8If the parameters did not lie in the gaugino region, that is, if j�j were not much greater than

M1;2, the heavier two neutralinos would also have signi�cant gaugino components, making decays

~g; ~q ! ~�03;4 !
~l possible, and this requirement would not be necessary.
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will be extremely di�cult. In this case, there is likely to be little opportunity for high
precision studies of sleptons at the LHC. Sleptons may be produced in large numbers at
the NLC, however, and this production is direct, that is, independent of various cascades
and branching ratios. We therefore now turn to a scenario in which slepton CP violation is
undetectable at the LHC and consider the sensitivity of similar probes at the NLC.

B. NLC

At e+e� colliders, sleptons are dominantly produced directly through correlated pair
production. Relative to the situation at hadron colliders, slepton production therefore is not
as heavily in
uenced by details of the sparticle spectrum and branching ratios. We will see
that, if slepton pairs are kinematically accessible, e+e� colliders o�er a robust opportunity
to measure slepton CP violation. Sleptons pairs ~lL~lL and ~lR~lR may be produced through
s-channel photon and Z diagrams, and also through t-channel neutralino exchange. CP

asymmetries in ~lL~lL and ~lR~lR events measure eJL and eJR, respectively.9 In this subsection,
we will study the prospects for e+e� colliders by considering the experimental setting of
the NLC, a proposed high energy linear e+e� collider, with maximum center-of-mass energyp
s = 0:5{1.5 TeV and luminosity L � 50�100 fb�1/yr. At such a collider, highly polarized

e� beams are expected to be available.
For the NLC, we study a scenario speci�ed by weak-scale SUSY parameters

m~lR
= 200 GeV; m~lL

= 350 GeV; M2 = 2M1 = 190 GeV;

tan � = 2; � = �400 GeV : (67)

In this scenario, the lightest two neutralinos are gaugino-like and the decay ~�02 ! ~l is
forbidden. Thus, sleptons are not produced in gluino and squark cascades at the LHC, and
precision studies of sleptons there are likely to be very di�cult.

With the underlying SUSY parameters above and
p
s = 500 GeV, right-handed sleptons

are pair-produced and decay through ~lR ! l~�01. Decays
~lR ! �l ~�

�
1 ; l~�

0
2 are also allowed, but

are highly suppressed by phase space and mixing angles, since the chargino and neutralino are
SU(2) gaugino-like. Note that both ~lL~lR and ~lL~lL production are inaccessible at

p
s = 500

GeV. Thus, the e�ects of CP violation in the ~lL sector are completely removed, and all
slepton CP violation is a measure of eJR. Of course, in any fortunate scenario in which
both left- and right-handed sleptons may be produced, the beam energy may always be
tuned to eliminate production of either ~lL or ~lR, with possibly signi�cant loss in slepton
cross section. If 
avor and CP violation in the ~lR sector is well-understood, one could then
increase the beam energy and attempt to measure the additional parameters that enter with
the production of left-handed sleptons.

Cuts have been studied in Ref. [8] for slepton 
avor-conserving signals. We adopt those
cuts here for the case of slepton 
avor-violating signals. The e�ciency of these cuts for the

9Associated production of ~lL~lR through t-channel neutralino exchange is also possible. This is

uncorrelated production of sleptons at separate vertices, and so the CP asymmetry in this process

is a linear combination of eJL and eJR.
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signal is approximately 30%.10 The dominant SM backgrounds are WW , e�W , and eeWW .
With unpolarized beams, the SM background cross section is 4.8 fb. However, as in our
previous study[15], we may exploit the advantages of right-polarized beams, which, in this
case, doubles our signal cross section and reduces the SM background to 2.6 fb for 90% beam
polarization.

We must also consider the additional SUSY backgrounds. For this beam energy, ~�01~�
0
2

and ~�02~�
0
2 production are kinematically accessible, but these are suppressed to negligible

levels by mixing angles in the gaugino region. Chargino pair production is also allowed,
and may produce dilepton events with large acoplanarity and missing pT . However, the
chargino background is reduced by the branching ratio B(~��1 ! l� ~�01). In addition, the
e�R beam polarization strongly suppresses chargino production, as the charginos are almost
purely gaugino. For 90% beam polarization, the chargino background is suppressed to a low
level relative to the leading SM backgrounds, and may be safely ignored in the following
analysis.11

The expressions for S
~l and B

~l are as in the previous subsection, with the exception that
the correlated pair expressions are to be used. For the other background processes,

S0 = 0:6 fb� L (68)

B0 = 2:6 fb� L : (69)

In contrast to the LHC case, S0 is not zero | the beam polarization induces an asymmetry
in the SM background, since e+e�R ! e��W+ is allowed, but e+e�R ! e+�W� is forbidden.
It is therefore important that the beam polarization and SM asymmetry be well estimated.

Contours of constant CP -violating cross section S=L for Scenario I are plotted in Fig. 5
in the (sin 2�;�m=�) plane for �xed sin � = 1. The CP asymmetry is maximal for �m � �,
and for eJ � 10�2, the di�erence can be as large as 100 events per year. In Figs. 6 and 7
the discovery reach at the NLC for various integrated luminosities is plotted for Scenarios
I and II. Relative to the LHC, the contour shapes are more di�cult to understand, as the
expressions for correlated pair production are complicated, but the essential behavior is
similar to that of the LHC case. The maximal reach in sin 2� is for �m � � = 0:58 GeV =
2:9 � 10�3m, and values of eJ � 10�3 � 10�2 may be probed, depending on the integrated
luminosities.

For large integrated luminosities, the NLC may therefore also probe small CP -violating
parameters. Of course, for SUSY parameters ideally suited to the LHC, where gluinos
and squarks are light and decay frequently to sleptons, the sensitivity at the NLC is not
competitive with that at the LHC. This stems from the fact that the slepton production
mechanism at the NLC is through weak interactions, whereas that at the LHC is through
strong interactions. The strength of the NLC, however, is that the analysis does not rely

10The 30% e�ciency is for ~e and ~� events from Ref. [8]. For the purposes of calculating background,

we will assume this e�ciency also for events involving ~� .

11If left-handed sleptons are to be studied, chargino pair background cannot be removed with beam

polarization. However, for m~��
1

> m~lL
, the beam energy could be tuned to eliminate chargino pair

production.
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on favorable gluino and squark masses and decay patterns. For example, if gluino and
squark masses are very large, or sleptons are simply not produced in squark and gluino
cascade decays, slepton studies may be extremely di�cult at the LHC, but would still be
possible at the NLC. In addition, in some instances, the NLC provides the possibility of
disentangling left- and right-handed slepton 
avor and CP violation by gradually raising
the beam energy. The NLC therefore provides a robust probe of slepton CP violation, for
the most part requiring only that slepton pairs be kinematically accessible.

VII. CONSTRAINTS FROM THE ELECTRON EDM

We have seen in the previous sections that two conditions are required for a large CP -
violating signal in the oscillation of sleptons: all the mixing angles in the W matrix should
be large (so that eJ is large), and at least two of the sleptons should be degenerate to nearly
their widths. In this section, we discuss the contribution to the electron EDM coming from
the CP -violating phases in the W matrices. As already mentioned in the discussion of CP -
violating rephase invariants, the dominant contributions to the electron EDM due to the
phases in W require non-trivial mixing in both the left and right slepton sectors, and are
thus probing the invariants fK12;13, which are completely distinct from the invariants eJL;R
probed at colliders. Nevertheless, we wish to show that in the case when all CP -violating
phases contributing to the eJ 's and fK's are comparable, and even if the bound on the electron
EDM improves by a factor of 10, a large CP -violating signal can still be visible at the LHC
and NLC. This is due to the fact that, for sleptons degenerate enough for visible collider
CP violation, the constraint on the fK from de places almost no restriction on the size of
the mixing angles, and so does not limit the size of the collider CP -violating signal.

Consider the contribution to de coming from fK12;13. For simplicity, we compute the
contribution from each of them separately, i.e., we �rst assume only two generation mixing
and compute the contribution coming from fK12, then assume that the �rst two generation
sleptons are exactly degenerate and compute the contribution from fK13. In the following
we assume that the lightest neutralino is primarily ~B with massM1. The contribution fromfK12 is then

d12e
e

= �fK12 �
�1

4�

m�(A� � tan �)

M3
1

 
�m2

12

�m2
12

!
L

 
�m2

12

�m2
12

!
R

f(xL; xR) ; (70)

where �m2
12 = m2

1 �m2
2, �m

2
12 = (m2

1 +m2
2)=2, x = �m2

12=M
2
1 , and

f(xL; xR) = xLxR
@2

@xL@xR

 
g(xL)� g(xR)

xL � xR

!
; g(x) =

x2 � 2x ln x� 1

2(x� 1)3
: (71)

Numerically, f(1; 1) = �1=30. The contribution from fK13 is enhanced by m�=m� relative

to the one from fK12:

d3e
e
= �fK13 �

�1

4�

m� (A� � tan �)

M3
1

 
�m2

12�3
�m2
12�3

!
L

 
�m2

12�3
�m2
12�3

!
R

f(xL; xR) ; (72)

with �m2
12�3 = m2

3�m2
0; �m

2
12�3 = (m2

3+m2
0)=2, where m0 is the common mass for the �rst

two generations, and here x = �m2
12�3=M

2
1 . (Actually, since all three generations need to
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be approximately degenerate, the slepton masses in the de�nition of x can be taken as the
average of all the scalar masses.)

We know that in order to have a large signal from our direct probe of the eJ, we need
the sleptons degenerate to within widths, so we expect �m2=m2 � 10�3 � 10�2. Requiring
the induced EDM to be less than the current experimental bound of 4 � 10�27e cm [21] by
a factor of 10 yields the bounds

���fK12

��� < 3�
�

M1

200 GeV

�2 ����� M1

A� � tan �

�����
"
f(1; 1)
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: (73)

These constraints do not place signi�cant restrictions on the sizes of the mixing angles
(unless tan� is known to be large) and hence do not a�ect the reach for our signal from theeJ . Of course, if an electron EDM is discovered, we cannot determine whether it is due to thefK; it could dominantly be due to a relative phase between the ~B mass and the A parameter,
for instance. Thus, a non-zero de does not necessarily imply non-zero fK12;13. However, the
CP asymmetries between lepton 
avor-violating events we discussed in the previous section
must be due to eJL;R, and seeing these asymmetries means that at least one of the eJL;R is
non-zero.

VIII. CONSTRAINTS FROM �! e


The large mixing angles in the W matrices needed for a large CP -violating signal may
give dangerously large contributions to the rate for � ! e
. We know, however, that a
large CP -violating signal requires at least two of the sleptons to be degenerate to within
widths. In this section, we show that as long as the third generation sleptons also have small
splittings from the other two generations, the slepton degeneracy is su�cient to suppress
the � ! e
 amplitude to harmless levels, even if there are large mixing angles in the W
matrices.

There are many contributions to � ! e
, but they fall into two classes: those which
require 
avor mixing for both left- and right-handed sleptons, and those which require only
left- or right-handed mixing. The most dangerous case is when there is mixing with the
third generation for both left- and right-handed scalars; insertion of the left-right mass for
the stau gives a contribution to the � ! e
 amplitude proportional to m� , while all other
contributions are at most proportional to m�. If we assume for simplicity that the �rst two
generation sleptons are exactly degenerate and keep only the ~B intermediate gaugino, then
with the same notation as in Eq. (72) the branching ratio for �! e
 relative to the current
experimental bound of 4:9 � 10�11[22] is

B(�! e
)

4:9 � 10�11
=
�
200 GeV

M1

�4 �����A� � tan �

M1

�����
2 "
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#2
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plus a similar contribution with L! R. We see that, if all the mixing angles WL;R are large,
we cannot allow O(1) splittings between the third generation and �rst two generations for
both left- and right-handed sleptons. If, however, the splittings are less than � 10�1 � 10�2

as in our Scenario I and II, it does not constrain the size of the mixing angles.
We now turn to contributions needing either only left-handed or only right-handed mix-

ing. There are again many diagrams. Let us consider only the contribution from the one
involving the left-right mass insertion for the ~�. Since it is proportional to A� � tan �, this
contribution begins to dominate for moderately large tan � and is otherwise comparable to
the other contributions. We �nd that

B(�! e
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: (75)

with a similar contribution from L! R, and where

h(xL; xR) = xL
@

@xL

g(xL)� g(xR)

xL � xR
; (76)

with h(1; 1) = 1=20.
From the above we see that even if only pure L or R mixing contributions are considered,

if all the mixing angles are large, no O(1) splittings are allowed between any pair of sleptons.
On the other hand, if (as in our Scenario II for large CP violation) all the sleptons are
degenerate to within their widths (so that �m2=m2 � 10�3 � 10�2), the contributions to
� ! e
 are already suppressed enough even for maximal mixing angles. Even if only the
�rst two generation sleptons are degenerate within widths, and the third is split o� by a
factor of 10 compared to the width (as in our Scenario I), the bounds from �! e
 can still
be met with moderately small products of mixing angles W32W

�
31 � 1=10, which does not

place a strong constraint on the size of ~J. For large W22W
�
21 (since its size is not restricted

if �m12 � �) and sin �, ~J can still be as large as a few �10�2, well within the reach of the
experiments.

IX. IMPLICATIONS FOR DISTINGUISHING MODELS FOR SCALAR MASSES

From the discussion in the previous sections, we see that an observable CP -violating
signal requires the following conditions. First, the slepton mixing angles and CP -violating
phase should be quite large to give a su�ciently large eJ , and at least two generations of
sleptons should be degenerate to about their widths to maximize the signal. In addition,
constraints from the 
avor changing process � ! e
 require that all three generations of
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sleptons should be quite degenerate if all mixing angles are large. These considerations
strongly suggest a particular pattern for the slepton mass matrix. Since the sleptons must
be nearly degenerate, their mass matrix must be very nearly proportional to the identity.
However, since all the mixing angles must be large and the mass splittings must be small,
the slepton mass matrix must deviate from the identity by small perturbations to all the
entries. The mass matrix must therefore have the form

m2
ij = m2

0 (�ij + �ij) ; (77)

where the �ij are of order �=m, and are of comparable size for all i; j. What sort of models
can give rise to this sort of mass matrix? The degeneracy among di�erent generations of
sleptons can originate from dynamics, 
avor symmetry, or both. In the following, we discuss
how this sort of slepton mass matrix can arise in these di�erent cases.

First, let us consider a case where no particular 
avor symmetry is present, and the
sleptons are degenerate because the mediation of SUSY breaking to the ordinary �elds is

avor-blind. Models with SUSY breaking mediated by gauge interactions are examples
of this class[25]. In this case, there are two important scales relevant to our study: �S,
the messenger scale of SUSY breaking, where SUSY breaking is �rst transmitted to the
ordinary sector, and �D, the scale where extra non-universal and 
avor-violating interactions
decouple. If �D > �S, the 
avor-blind mediation of SUSY breaking will guarantee the
degeneracy of sleptons, and hence render the slepton mixing matrices WL;R trivial. On the
other hand, suppose �D

<� �S, and the sleptons have 
avor-violating interactions hiI�li �FI��,
where hiI� are Yukawa couplings, li is the generation i slepton, and �F and � are extra �elds
decoupling at �D. The slepton masses then receive extra non-universal, 
avor-violating
corrections

�m2
ij = �

1

8�2
X
I�

hiI�h
�
jI�

�
m2

0 +m2
��

+m2
�FI

��
ln

�S

�D

+ cTH

�
; (78)

where cTH represents the threshold corrections. If the couplings hiI� are complex and O(1)
(since there is no 
avor symmetry to restrict their sizes), the mixing matrix that diagonalizes
the slepton mass matrix will have large mixing angles and a O(1) CP -violating phase. If the
logarithm is not large, then the splittings among di�erent generations are small, naturally
of the order �m=m � h2=16�2 � 10�2 � 10�4 for h � 0:1 � 1, which is comparable to
the slepton width �=m � g21=8� � phase space factor, as required for an observable CP -
violating signal. The closeness of �D and �S could be accidental, or may arise because they
have a common origin.12 Another possibility is that the dominant contribution to the scalar
masses is 
avor-blind, say, from gauge mediated SUSY breaking, but the fundamental SUSY
breaking vacuum energy F 2 is large enough (F � 1018 � 1020 GeV2) that the supergravity
contribution to the scalar mass squared � (F=MPl)2 � (1 � 10 GeV)2 is about 10�4 � 10�2

of the gauge-mediated contribution. If the supergravity mediation does not obey any 
avor
symmetry, we expect comparable contributions to all elements of the scalar mass matrices,

12For instance, they may both be triggered by the SUSY breaking. Such a framework is discussed

in Ref. [26] within the context of 
avor symmetries.
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again leading to the small non-degeneracies and large mixing angles needed for the CP -
violating signal.

In the case when there is a 
avor symmetry that is broken at a scale �F and gives
rise to the observed pattern of fermion masses, the degeneracy among di�erent generation
sleptons can either come from the dynamics or be ensured by the 
avor symmetry itself (for
certain non-Abelian 
avor symmetries). Beneath the 
avor symmetry breaking scale �F ,
extra 
avor-violating interactions can be present down to �D if not all the �elds decouple
at �F . We may still get the radiative corrections to the slepton masses given in Eq. (78) for
�D

<� �S, but some of the couplings hiI� will be small because of the 
avor symmetry. In
particular, we do not expect that both li and lj, for i 6= j, can have O(1) couplings to the
same �elds �F ; � if li and lj transform di�erently under the 
avor symmetry. The o�-diagonal
elements of the mass matrix generated from radiative corrections will then be suppressed.
The splitting generated in the diagonal elements may be less suppressed or unsuppressed
because the di�erent generations may have di�erent couplings, if, for example, the 
avor
symmetry is Abelian. However, if �F < �S , there will be additional corrections to the
scalar masses from the 
avor symmetry breaking e�ects. These corrections come from 
avor
symmetric operators like

m2
S

�i
y

M
lyi
�j

M
lj ; (79)

where the � �elds are SM singlets that carry 
avor (\
avons"), and with which the sleptons
combine to form 
avor singlets. These non-renormalizable operators may be present in the
fundamental theory asMPl suppressed operators (in which caseM =MPl), or can arise in the
Froggatt-Nielsen mechanism[27] when the heavy Froggatt-Nielsen �elds are integrated out
(in which case M = MFN). When the 
avon �elds � acquire nonzero vacuum expectation
values, breaking the 
avor symmetry, the operators of Eq. (79) become mass terms for
the sleptons. They can contribute to both the o�-diagonal elements and the splitting in
the diagonal elements, depending on the details of particular models. The (spontaneously
broken) 
avor symmetry is expected to explain the light fermion masses: small Yukawa
couplings are understood as powers in the small parameters h�i=M . In many theories, the
parameters h�i=M are of the order 10�1 � 10�2 in order to generate the observed fermion
mass hierarchy. The slepton mass splitting induced by Eq. (79) could be close to their widths
for suitable powers of � in these operators. In addition, large CP -violating phases in the
slepton mixing matrices are expected to be generated in this case since similar operators
also give rise to the CP -violating phase in the CKM matrix. Thus, in theories in which
spontaneously broken 
avor symmetries are used to explain the fermion mass hierarchy, the
necessary conditions for generating a large CP -violating signal may also arise, as long as
the scale of symmetry breaking is beneath the scale at which SUSY breaking is transmitted
to the sfermions.

X. CONCLUSIONS

In this paper, we have studied the possibility of probing CP violation in the supersym-
metric lepton mixing matrices WL;R which diagonalize the left- and right-handed slepton
mass matrices in the basis where the charged lepton masses are diagonal. There are four
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independent CP -violating phases associated with the slepton mass matrices, and we gave
them a rephase invariant description in terms of the four quantities eJL;R and fK12;13. While

the electron EDM depends on the fK, the CP -violating asymmetries in the oscillations and
decays of sleptons at colliders depend on eJ, and are not directly constrained from the bounds
on the electron EDM. The CP -violating e�ects associated with a single eJ disappear both
as eJ goes to zero as well as when any two slepton masses become degenerate. We found
that three conditions are necessary to produce a large collider CP asymmetry in lepton

avor-violating events:

1. The W matrices must have large CP and 
avor-violating angles, leading to eJ > 10�3.

2. The two sleptons of highest degeneracy should have �m within an order of magnitude
of �.

3. All three sleptons must have some degree of degeneracy, i.e., �m=m� 1.

The last requirement is necessary to ensure that the large 
avor mixing angles of W do not
violate bounds from �! e
. It is interesting that the observation of a sizeable CP -violating
signal tells us so much about the structure of the slepton mass matrix in a region where
the sleptons are so degenerate that the limits from rare processes and EDMs are irrelevant.
This is because we are probing an oscillation phenomenon, and the superGIM suppression
of the amplitude due to near slepton degeneracy occurs only for �m=� � 1, rather than
�m=m� 1 as in the low energy rare processes.

We showed that the experimental probe of eJ at both the LHC and NLC can be powerful.
Our signal at the LHC is from strong production of squarks and gluinos, followed by cascade
decays to the second neutralino, which in turn decays into slepton and lepton, with the
slepton subsequently oscillating and decaying into the lightest neutralino and lepton. If such
cascade decays are realized in nature, we �nd that the LHC can probe signi�cant regions in
the ( eJ;�m=�) plane. The reach depends sensitively on the strong production cross section
and hence on the squark and gluino masses, but we �nd that eJ > 10�3 and �m=� between
1/10 and 10 can be probed at the LHC. If slepton CP violation is undetectable at the
LHC, a robust probe is provided by the NLC, where sleptons are produced in great numbers
independent of the various cascades and branching ratios required at the LHC. We �nd that
the NLC has a comparable reach in the ( eJ;�m=�) plane for high integrated luminosities. In
this paper, we have concentrated on signals at the LHC and NLC, because these machines
o�er the possibility of probing eJ to the level of 10�3 or perhaps even further, well below
the maximum of value of 1

6
p
3
. We also noted, however, that if slepton masses are near their

current bound and eJ is near maximal, slepton CP violation may also be observable at LEP
II. Similarly, if squarks and gluinos are very light, a possibility of detecting slepton CP

violation may exist at Run II and future upgrades of the Tevatron.
We �nally considered the implications of an observable CP -violating signal for models of

the scalar masses. If a CP -violating asymmetry is observed, we saw that the mass splittings
must be non-zero and � �. It should be noted that the sensitivity of the CP -violating
signal to small but non-zero mass splittings is extraordinary. In the examples we gave, mass
splittings as small as � 50 MeV could be distinguished from zero; such precision for slepton
mass di�erences is typically unobtainable through conventional considerations of kinematic
distributions. We saw that an observable CP -violating signal implies further that the scalar
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masses are dominantly universal, but have extra, non-hierarchical contributions to all ele-
ments of the mass matrix that are � �=m � 10�2 � 10�4 of the universal mass. Such a
structure for scalar mass matrices does not typically arise in the simplest models for solving
the supersymmetric 
avor-changing problem: it is absent in theories with gauge-mediated
SUSY breaking and in theories where the scalars are kept degenerate (or aligned with the
fermions) by spontaneously broken 
avor symmetries. However, there is an important frame-
work in a more general theory in which the CP -violating signals are large. In this class of
models, the dynamics dominantly responsible for generating scalar masses is 
avor-blind,
leading to nearly degenerate slepton masses. However, the presence of 
avor-violating per-
turbations beneath the scale of the communication of SUSY breaking, or of sub-dominant,

avor-violating transmission of SUSY breaking, can give non-hierarchical, small contribu-
tions to all the elements of the slepton mass matrices needed for a large CP -violating signal.
Observation of a CP -violating signal gives critical information on the relationship between
the nature of the communication of SUSY breaking and the presence of new 
avor-violating
interactions at high energies.
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APPENDIX A: RELATING Im(m2

12
m2

23
m2

31
) AND eJ

In this appendix, we derive the relationship between the CP -violating invariants eJ and
Im[m2

12m
2
23m

2
31] given in Eq. (7). Using m2

�� =
P

iW
�
i�Wi�m

2
i , we have

Im
h
m2

12m
2
23m

2
31

i
=
X
ijk

Im
h
W �

i1Wi2W
�
j2Wj3W

�
k3Wk1

i
m2

im
2
jm

2
k : (A1)

However, using the unitarity of W as W �
i1Wk1 = �ik�W �

i2Wk2�W �
i3Wk3, the imaginary part

in the above becomes manifestly proportional to eJ . Since we know that the LHS vanishes if
any two of the m2

i are identical and the RHS is cubic in the m2
i , all the m

2
i dependence must

be proportional to (m2
2 �m2

1)(m
2
3 �m2

2)(m
2
1 �m2

3). It is easy to show that the constant of
proportionality is 1, and Eq. (7) is established.

APPENDIX B: s-, t-INTERFERENCE

The CP -violating asymmetries at colliders must be linearly dependent on eJ. For the
case of pair production, the �st0 piece may be demonstrated to have this form by breaking
the sum into 5 pieces:
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X
i=j=k

:
X
i

Im[Wi�W
�
i�W

�
i�Wi1W

�
i1Wi�]AiiAii = 0 (B1)

X
i=j 6=k

:
X
i6=k

Im[Wi�W
�
i�W

�
i�Wi1W

�
k1Wk�]AiiAik =

X
i6=k
jWi�j2 eJ ik1�Aik (B2)

X
i=k 6=j

:
X
i6=j

Im[Wi�W
�
i�W

�
j�Wj1W

�
i1Wi�]AijAii =

X
i6=j
jWi�j2 eJ ij�1Aij (B3)

X
i6=j=k

:
X
i6=j

Im[Wi�W
�
i�W

�
j�Wj1W

�
j1Wj�]AijAij =

X
i6=j
jWj1j2 eJ ij��A2

ij (B4)

X
i6=j 6=k

:
X

i6=j 6=k
Im[Wi�W

�
i�W

�
j�Wj1W

�
k1Wk�]AijAik

=
X

i6=j 6=k
Im

h
(��� �Wj�W

�
j� �Wk�W

�
k�)W

�
j�Wj1W

�
k1Wk�

i
AijAik

=
X

i6=j 6=k

h
� jWj�j2 eJ jk1�AijAik � jWk�j2 eJ jk1�AijAik

i
; (B5)

where the unitarity of W has been used to simplify the �nal term. We thus see that �st
��

may be written in a form explicitly proportional to eJ as

�st
�� = 2i

X
i6=j

h
jWi�j2 eJ ij1�Aij � jWi�j2 eJ ij1�Aij + jWj1j2 eJ ij��A2

ij

i

�2i
X

i6=j 6=k

h
jWj�j2 eJ jk1�AijAik � jWj�j2 eJ jk1�AijAik

i
: (B6)

The sum is over all on-shell slepton generations, and so the last sum is relevant only when
all three generations may be produced.
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TABLES

TABLE I. Particle masses (in GeV) at the LHC analysis point, with q = u; d; c; s and l = e; �; � .

Mass Mass Mass Mass

~g 767 ~b2 662 ~�02 231 ~lL 239

~qL 688 ~b1 635 ~��1 230 ~�l 230

~qR 662 ~t2 717 ~�01 121 ~lR 157
~t1 498 h 100

TABLE II. Cross sections � (in fb) at the LHC analysis point, with q = u; d; c; s.

� � �

~g~g 1751 ~q~q 2379 ~b~�b 297

~g~q; ~g~�q 8306 ~q~�q 2820 ~t~�t 701

TABLE III. Branching fractions B (in percent) at the LHC analysis point, with q = u; d; c; s

and l = e; �; � .

B B B

~g ! ~qL�q 31 ~qL ! q ~�02 32 ~�02 !
~lRl 36

~g ! ~qR�q 31 ~qL ! q ~��1 65 ~�02 ! h~�01 63

~g ! ~b1�b 10 ~qL ! q ~�01 3 ~�02 ! Z ~�01 1

~g ! ~b2�b 14 ~qR ! q ~�01 99 ~��1 ! W ~�01 98

~g ! ~t1�t 14 ~lR ! l~�01 100
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FIG. 1. Constant contours (in fb) of the CP -violating cross section S=L for Scenario I at the

LHC. The signal is maximal for �m � � = 0:13 GeV = 8:1 � 10�4m. The signal S is directly

proportional to eJ . For the sin 2� axis the CP -violating phase is �xed to sin � = 1.
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FIG. 2. 3� slepton CP violation discovery contours at the LHC with an integrated luminos-

ity of 100 fb�1 in Scenario I (two generation degeneracy). The CP -violating phase is �xed to

sin � = 1. The wide contour is for the parameters discussed in the text, where m~g = 767 GeV, and

� = 0:13 GeV = 8:1� 10�4m. The other contours give an indication of possible discovery reaches

for scenarios with m~g = m~q shown (in GeV), under the naive assumption that all cross sections

scale simply as the gluino and squark cross sections. See full discussion in the text.
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FIG. 3. Same as for Fig. 2, but for Scenario II (three generation degeneracy).
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FIG. 4. Same as for Fig. 3, but for 10 times improved statistics. Possible sources of such an

improvement include more favorable branching ratios, the combination of all lepton asymmetries,

and an increase in the assumed integrated luminosity to include multi-year event samples and both

detectors.
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FIG. 5. Constant contours (in fb) of the CP -violating cross section S=L for Scenario I at the

NLC. The signal is maximal for �m � � = 0:58 GeV = 2:9� 10�3m. The CP -violating phase is

�xed to sin � = 1.
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FIG. 6. 3� slepton CP violation discovery contours at the NLC with integrated luminosity

given (in fb�1) for Scenario I (two generation degeneracy). The CP -violating phase is �xed to

sin � = 1. The SUSY parameters are as given in the text, with � = 0:58 GeV = 2:9� 10�3m.
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FIG. 7. Same as for Fig. 6, but for Scenario II (three generation degeneracy).
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